ISBN
Formato impreso
979-13-87631-12-3
Formato digital
979-13-87631-13-0
Fecha de publicación
20-12-2024
Licencia
D. R. © copyright 2024; Moisés Hussein Chávez Hernández y Virginia GuadalupeLópez Torres.
Oscar Mendez Garcia
Universidad Autónoma de Baja California
0009-0006-6862-9122
Moisés Hussein Chávez Hernández
Universidad Autónoma de Baja California
0000-0002-2035-4821
Acerca de
La tecnología se ha convertido en una herramienta indispensable para las organizaciones que buscan mejorar sus procesos y funciones buscando el máximo desempeño con el uso eficiente de sus recursos, en este tipo de procesos de cambio la tecnología ha demostrado ser de gran utilidad, es por esta razón que el sector agrícola ha incursionado en la búsqueda de herramientas tecnológicas para mejorar el desempeño en los factores de mayor impacto para el desarrollo de la industria agrícola (Qayyum et al., 2023).
Es por ello que se utiliza el modelo TOE propuesto por Tornatzky et al., (1990), basado en la teoría de la contingencia que analiza factores que influyen en la adopción de tecnología en el contexto de la empresa, una ventaja de este modelo es que es aplicable a todo tipo de organización (Khayer et al., 2021), dentro de este modelo las empresas pueden utili-zar de forma efectiva la tecnológica dentro de los factores tecnológicos, organizacionales y del entorno.
Dentro del sector de la agricultura el factor del Entorno es uno de los factores importantes mencionados en el modelo TOE para medir la productividad, eficiencia a partir de la demanda creada por el crecimiento global, esto ha provocado que las empresas incursionen en la innovación y uso tecnológico buscando mejorar sus procesos crean una ventaja competitiva, reconociendo que la aplicación de la tecnológica en las actividades agrícolas en poco tiempo a demostrado mejoras significativas para el desarrollo de los diversos dentro de las empresas.
Referencias
Kwan Chung, C. K., & Ortiz Jiménez, L. (2020). Percepción de la adopción del e-commerce a través del modelo TOE en las Micro y Pequeñas Empresas del Paraguay. Revista científica en ciencias sociales., 2(2), 35–52. https://doi.org/10.53732/rccsociales/02.02.2020.35
Agboeze, M. U., Eze, G. C., Nweke, P. O., Igwe, N. J., Imo, O. C., Okop, E. O., Okengwu, M. C., Agboeze, M. N., Okeke, P. M. D., & Otu, M. S. (2021). Role of Local Government in Community Development Projects in Nsukka Local Government Area of Enugu State, Nigeria: Implication for Adult Educators. SAGE Open, 11(2), 215824402110266. https://doi.org/10.1177/21582440211026634
Ali, O., & Osmanaj, V. (2020). The role of government regulations in the adoption of cloud computing: A case study of local government. Computer Law & Security Review, 36, 105396. https://doi.org/10.1016/j.clsr.2020.105396
Bhatia, M. S., & Kumar, S. (2022). Linking stakeholder and competitive pressure to Industry 4.0 and performance: Mediating effect of environmental commitment and green process innovation. Business Strategy and the Environment, 31(5), 1905–1918. https://doi.org/10.1002/bse.2989
Burkitbayeva, S., Janssen, E., & Swinnen, J. (2020). Technology Adoption, Vertical Coordination in Value Chains, and FDI in Developing Countries: Panel Evidence from the Dairy Sector in India (Punjab). Review of Industrial Organization, 57(2), 433–479. https://doi.org/10.1007/s11151-020-09763-1
Castiblanco Jimenez, I. A., Cepeda García, L. C., Marcolin, F., Violante, M. G., & Vezzetti, E. (2021). Validation of a TAM Extension in Agriculture: Exploring the Determinants of Acceptance of an e-Learning Platform. Applied Sciences, 11(10), 4672. https://doi.org/10.3390/app11104672
Caycho, T. (2018). Contributions to the quantification of content validity in nursing questionnaires. Revista Cubana de Enfermería, 34(2), 262–264.
Delera, M., Pietrobelli, C., Calza, E., & Lavopa, A. (2022). Does value chain participation facilitate the adoption of Industry 4.0 technologies in developing countries? World Development, 152, 105788. https://doi.org/10.1016/j.worlddev.2021.105788
Escobar-Pérez, J., & Martínez, A. (2008). Validez de contenido y juicio de expertos: Una aproximación a su utilización. Avances en Medición, 6, 27–36.
Kabir, K. H., Sarker, S., Uddin, M. N., Leggette, H. R., Schneider, U. A., Darr, D., & Knierim, A. (2022). Furthering climate-smart farming with the introduction of floating agriculture in Bangladeshi wetlands: Successes and limitations of an innovation transfer. Journal of Environmental Management, 323, 116258. https://doi.org/10.1016/j.jenvman.2022.116258
Khayer, A., Jahan, N., Hossain, Md. N., & Hossain, Md. Y. (2021). The adoption of cloud computing in small and medium enterprises: A developing country perspective. VINE Journal of Information and Knowledge Management Systems, 51(1), 64–91. https://doi.org/10.1108/VJIKMS-05-2019-0064
Kuijpers, R., & Swinnen, J. (2016). Value Chains and Technology Transfer to Agriculture in Developing and Emerging Economies. American Journal of Agricultural Economics, 98(5), 1403–1418. https://doi.org/10.1093/ajae/aaw069
Kumar, D., Singh, R. K., Mishra, R., & Daim, T. U. (2023). Roadmap for integrating blockchain with Internet of Things (IoT) for sustainable and secured operations in logistics and supply chains: Decision making framework with case illustration. Technological Forecasting and Social Change, 196, 122837. https://doi.org/10.1016/j.techfore.2023.122837
Kwarteng, M. A., Ntsiful, A., Diego, L. F. P., & Novák, P. (2023). Extending UTAUT with competitive pressure for SMEs digitalization adoption in two European nations: A multi-group analysis. Aslib Journal of Information Management. https://doi.org/10.1108/AJIM-11-2022-0482
Lin, D., Lee, C. K. M., Lau, H., & Yang, Y. (2018). Strategic response to Industry 4.0: An empirical investigation on the Chinese automotive industry. Industrial Management & Data Systems, 118(3), 589–605. https://doi.org/10.1108/IMDS-09-2017-0403
Majstorovic, V. D., & Mitrovic, R. (2019). Industry 4.0 Programs Worldwide. En L. Monostori, V. D. Majstorovic, S. J. Hu, & D. Djurdjanovic (Eds.), Proceedings of the 4th International Conference on the Industry 4.0 Model for Advanced Manufacturing (pp. 78–99). Springer International Publishing. https://doi.org/10.1007/978-3-030-18180-2_7
Maragno, G., Tangi, L., Gastaldi, L., & Benedetti, M. (2023). Exploring the factors, affordances and constraints outlining the implementation of Artificial Intelligence in public sector organizations. International Journal of Information Management, 73, 102686. https://doi.org/10.1016/j.ijinfomgt.2023.102686
Mazwane, S., Makhura, M. N., Senyolo, M. P., & Ginige, A. (2023). Value Chain Digitalisation and Adoption Intention by Proactive Land Acquisition Strategy (PLAS) Farmers in the Eastern Cape Province, South Africa. Sustainability, 15(21), 15590. https://doi.org/10.3390/su152115590
Perera, C. S. R., & Gunatilake, S. (2022). Value chain management in Sri Lankan construction industry: Contractor’s perspective. International Journal of Construction Management, 22(16), 3137–3147. https://doi.org/10.1080/15623599.2020.1843110
Qayyum, M., Zhang, Y., Wang, M., Yu, Y., Li, S., Ahmad, W., Maodaa, S. N., Sayed, S. R. M., & Gan, J. (2023). Advancements in technology and innovation for sustainable agriculture: Understanding and mitigating greenhouse gas emissions from agricultural soils. Journal of Environmental Management, 347, 119147. https://doi.org/10.1016/j.jenvman.2023.119147
Reyes, M. A. G., Ramirez, J. A. P., & Vargas, A. D. de la C. (2020). Validación del instrumento del Marketing Relacional “RM” en los clientes de la empresa Cinemark, Surco,2020. Revista de Investigación Valor Agregado, 7(1), Article 1. https://doi.org/10.17162/riva.v7i1.1413
Rjab, A. B., Mellouli, S., & Corbett, J. (2023). Barriers to artificial intelligence adoption in smart cities: A systematic literature review and research agenda. Government Information Quarterly, 40(3), 101814. https://doi.org/10.1016/j.giq.2023.101814
Saxena, N., Gera, N., & Taneja, M. (2023). Factors influencing mobile banking adoption in India: The role of government support as a mediator. THE ELECTRONIC JOURNAL OF INFORMATION SYSTEMS IN DEVELOPING COUNTRIES, 89(6), e12287. https://doi.org/10.1002/isd2.12287
Semenova, N. N., & Averin, A. Yu. (2022). Assessment of the Effectiveness of State Support for Insurance in Agriculture in Russia. REGIONOLOGY, 30(2), 299–323. https://doi.org/10.15507/2413-1407.119.030.202202.299-323
Shabankareh, M., Nazarian, A., Golestaneh, M. H., & Dalouchi, F. (2023). Health tourism and government supports. International Journal of Emerging Markets. https://doi.org/10.1108/IJOEM-03-2022-0391
Si, H., Duan, X., Cheng, L., & De Vos, J. (2024). Adoption of shared autonomous vehicles: Combined effects of the external environment and personal attributes. Travel Behaviour and Society, 34, 100688. https://doi.org/10.1016/j.tbs.2023.100688
Smidt, H. J., & Jokonya, O. (2022). Factors affecting digital technology adoption by small-scale farmers in agriculture value chains (AVCs) in South Africa. Information Technology for Development, 28(3), 558–584. https://doi.org/10.1080/02681102.2021.1975256
Soewarno, N., & Tjahjadi, B. (2020). Mediating effect of strategy on competitive pressure, stakeholder pressure and strategic performance management (SPM): Evidence from HEIs in Indonesia. Benchmarking: An International Journal, 27(6), 1743–1764. https://doi.org/10.1108/BIJ-06-2019-0292
SOEWARNO, N., TJAHJADI, B., & PERMATANADIA, D. (2020). Competitive Pressure and Business Performance in East Java Batik Industry. The Journal of Asian Finance, Economics and Business, 7(12), 329–336. https://doi.org/10.13106/JAFEB.2020.VOL7.NO12.329
Suchek, N., Ferreira, J. J. M., & Fernandes, P. O. (2023). Industry 4.0 and global value chains: What implications for circular economy in SME? Management Decision. https://doi.org/10.1108/MD-11-2022-1541
Tiwari, S., Sharma, P., & Jha, A. K. (2024). Digitalization & Covid-19: An institutional-contingency theoretic analysis of supply chain digitalization. International Journal of Production Economics, 267, 109063. https://doi.org/10.1016/j.ijpe.2023.109063
Tornatzky, L. G., Fleischer, M., & Chakrabarti, A. K. (1990). The Processes of Technological Innovation. Lexington Books.
Torres, X. A., & Flores, R. C. (2018). PILOTAJE DE INSTRUMENTOS DE EVALUACIÓN DEL DESEMPEÑO DOCENTE EN LA UNIVERSIDAD CENTRAL DEL ECUADOR PARA EL PERIODO ACADÉMICO 2017-2018 Autores e infomación del artículo. https://www.eumed.net/rev/atlante/2018/02/evaluacion-desempeno-docente.zip
Toscano-Jara, J., Loza-Aguirre, E., & Franco-Crespo, A. (2021). La orientación TOE en la investigación de la transformación digital con modelos probabilísticos de tópicos. https://repositorio.altecasociacion.org/handle/20.500.13048/1902
Urcádiz Cázares, F. J., Monroy Ceseña, M. A., Urcádiz Cázares, F. J., & Monroy Ceseña, M. A. (2022). Escala nominal como alternativa para la evaluación de la calidad del servicio: Caso de estudio en hotel hacienda Bugambilias México. Visión de futuro, 26(2), 143–167. https://doi.org/10.36995/j.visiondefuturo.2022.26.02.005.es
Wang, Y.-L., & Ellinger, A. D. (2011). Organizational learning: Perception of external environment and innovation performance. International Journal of Manpower, 32(5/6), 512–536.
Wu, Y., & Tham, J. (2023). The impact of environmental regulation, Environment, Social and Government Performance, and technological innovation on enterprise resilience under a green recovery. Heliyon, 9(10), e20278. https://doi.org/10.1016/j.heliyon.2023.e20278
Yoon, C., Lim, D., & Park, C. (2020). Factors affecting adoption of smart farms: The case of Korea. Computers in Human Behavior, 108, 106309. https://doi.org/10.1016/j.chb.2020.106309
Zhou, B., & Zheng, L. (2023). Technology-pushed, market-pulled, or government-driven? The adoption of industry 4.0 technologies in a developing economy. Journal of Manufacturing Technology Management, 34(9), 115–138. https://doi.org/10.1108/JMTM-09-2022-0313