Bastida, Gabriela Adriana
Universidad Nacional del Litoral
0000-0003-0205-1787
Aguado Garcia, Roberto Juan
Universidad de Girona
0000-0001-9864-1794
Marc Delgado-Aguilar
Universidad de Girona
0000-0002-1540-3326
Tarrés Farres, Joaquim Agusti
Universidad de Girona
0009-0001-2363-3340
Miguel Angel Mario Zanuttini
Universidad Nacional del Litoral
0000-0001-5745-6103
Maria Veronica Galván
Universidad Nacional del Litoral
0000-0002-0519-3900
Acerca de
La nanocelulosa, derivada de fuentes renovables como fibras de madera y plantas, ha emergido como un material de gran interés en la investigación contemporánea. Su estudio experimenta un crecimiento exponencial debido a sus notables propiedades. En este marco, el presente capítulo se centra en explorar el proceso de obtención de celulosa micro/nano fibrilar (Ox-CMNF) mediante diversos tratamientos con ácido oxálico, evaluando la influencia de variables claves en dicho proceso. La variación de la presión en el homogeneizador y la concentración de ácido oxálico se ha examinado como factores determinantes para obtener Ox-CMNF con características específicas. Este análisis detallado proporciona una comprensión más profunda de cómo ajustar las condiciones del proceso para obtener resultados óptimos en términos de tamaño, forma y propiedades de las fibras de nanocelulosa.
Adicionalmente, se analiza la interacción de las Ox-CMNF con un complejo natural de polielectrolito catiónico (PEC) basado en xilano y quitosano. Se estudiaron los mecanismos de floculación de suspensiones de las Ox-CMNF con un PEC en condiciones dinámicas midiendo la viscosidad, mientras que la floculación en condiciones estáticas se examinó por mediciones del punto gel, determinación del tamaño promedio de flóculo y análisis de potencial ζ. Este estudio permite evaluar el punto de máxima floculación de las Ox-CMNF, las interacciones como tal y, además, proporciona información valiosa sobre la posible aplicación de estos materiales en la fabricación de papel reciclado. En este contexto, se determinó la eficiencia del PEC para retener diferentes Ox-CMNF durante la formación del papel y cómo influye el sistema sobre las propiedades del papel de fibra reciclada sin blanquear. Una mejora simultánea en la capacidad de drenaje y las propiedades mecánicas hace que el sistema PEC/CMNF propuesto sea una solución prometedora para la produc-ción de papel de embalaje. La investigación demuestra la versatilidad y las oportunidades de la nanocelulosa, por un lado, como un material aislado, pero también en su interacción con otros compuestos, abriendo la puerta a potenciales aplicaciones innovadoras en diversos campos.
Referencias
Abdul Khalil, H. P. S., Adnan, A. S., Yahya, E. B., Olaiya, N. G., Safrida, S., Hossain, M. S., … & Pasquini, D. (2020). A review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers, 12(8), 1759.
Albornoz-Palma, G., Betancourt, F., Mendonça, R. T., Chinga-Carrasco, G., & Pereira, M. (2020). Relationship between rheological and morphological characteristics of cellulose nanofibrils in dilute dispersions. Carbohydrate polymers, 230, 115588.
Ang, S., Haritos, V., & Batchelor, W. (2019). Effect of refining and homogenization on nanocellulose fiber development, sheet strength and energy consumption. Cellulose, 26, 4767-4786.
Bakar, N. A., Abd Rahman, N., Mahadi, M. B., Zuki, S. M., Amin, K. M., Wahab, M. Z., & Lenggoro, I. W. (2022). Nanocellulose from oil palm mesocarp fiber using hydrothermal treatment with low concentration of oxalic acid. Materials Today: Proceedings, 48, 1899-1904.
Bastida, G. A., Schnell, C. N., Mocchiutti, P., Solier, Y. N., Inalbon, M. C., Zanuttini, M. Á., & Galván, M. V. (2022). Effect of oxalic acid concentration and different mechanical pre-treatments on the production of cellulose micro/nanofibers. Nanomaterials, 12(17), 2908.
Bastida, G. A., Tarrés, Q., Aguado, R., Delgado-Aguilar, M., Zanuttini, M. Á., & Galván, M. V. (2023a). Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes. Nanomaterials, 13(17), 2420.
Bastida, G. A., Zanuttini, M. A., Tarrés, Q., Fiol, N., Delgado-Aguilar, M., & Galván, M. V. (2023b). Innovative system based on natural polyelectrolyte complex and cellulose micro/nanofibers to improve drainability and properties of recycled paper. Cellulose, 1-16.
Besbes, I., Alila, S., & Boufi, S. (2011). Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydrate Polymers, 84(3), 975-983.
Blanco, A., Negro, C., Fuente, E., & Tijero, J. (2005). Effect of shearing forces and flocculant overdose on filler flocculation mechanisms and floc properties. Industrial & engineering chemistry research, 44(24), 9105-9112.
Chen, L., Zhu, J. Y., Baez, C., Kitin, P., & Elder, T. (2016). Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chemistry, 18(13), 3835-3843.
Chen, Y., Zhang, L., Mei, C., Li, Y., Duan, G., Agarwal, S., Greiner A., Chunxin Ma., & Jiang, S. (2020). Wood-inspired anisotropic cellulose nanofibril composite sponges for multifunctional applications. ACS applied materials & interfaces, 12(31), 35513-35522.
Chirayil, C. J., Joy, J., Mathew, L., Mozetic, M., Koetz, J., & Thomas, S. (2014). Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Industrial Crops and Products, 59, 27-34.
Delgado-Aguilar, M., González, I., Pèlach, M. A., De La Fuente, E., Negro, C., & Mutjé, P. (2015). Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose, 22, 789-802.
Delgado-Aguilar, M., González, I., Tarrés, Q., Pèlach, M. À., Alcalà, M., & Mutjé, P. (2016). The key role of lignin in the production of low-cost lignocellulosic nanofibres for papermaking applications. Industrial Crops and Products, 86, 295-300.
Ehman, N. V., Lourenço, A. F., McDonagh, B. H., Vallejos, M. E., Felissia, F. E., Ferreira, P. J. T., Chinga-Carrasco, G. & Area, M. C. (2020). Influence of initial chemical composition and characteristics of pulps on the production and properties of lignocellulosic nanofibers. International journal of biological macromolecules, 143, 453-461.
Esfahani, A. R., Zhang, Z., Sip, Y. Y. L., Zhai, L., & Sadmani, A. A. (2020). Removal of heavy metals from water using electrospun polyelectrolyte complex fiber mats. Journal of Water Process Engineering, 37, 101438.
Eyholzer, C., Bordeanu, N., Lopez-Suevos, F., Rentsch, D., Zimmermann, T., & Oksman, K. (2010). Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose, 17, 19-30.
Ferrer, A., Filpponen, I., Rodríguez, A., Laine, J., & Rojas, O. J. (2012). Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresource technology, 125, 249-255.
Forgacs, O.L. (1969) Groundwood Pulp Evaluation: Review of Recent Development. Paper Technol, 8(3), 232-239.
Gamelas, J. A., Pedrosa, J., Lourenço, A. F., Mutjé, P., González, I., Chinga-Carrasco, G., Singh, G. & Ferreira, P. J. (2015). On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. Micron, 72, 28-33.
Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical reviews, 110(6), 3479-3500.
Henschen, J., Li, D., & Ek, M. (2019). Preparation of cellulose nanomaterials via cellulose oxalates. Carbohydrate polymers, 213, 208-216.
Ho, T. T. T., Abe, K., Zimmermann, T., & Yano, H. (2015). Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose, 22, 421-433.
Hu, F., Zeng, J., Cheng, Z., Wang, X., Wang, B., Zeng, Z., & Chen, K. (2021). Cellulose nanofibrils (CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper. Carbohydrate Polymers, 254, 117474.
Jagtap, P., Patil, K., & Dhatrak, P. (2021, September). Polyelectrolyte complex for drug delivery in biomedical applications: A Review. In IOP Conference Series: Materials Science and Engineering (Vol. 1183, No. 1, p. 012007). IOP Publishing.
Kunaver, M., Anžlovar, A., & Žagar, E. (2016). The fast and effective isolation of nanocellulose from selected cellulosic feedstocks. Carbohydrate Polymers, 148, 251-258.
Lieberman, H., Rieger, M., & Banker, G. S. (Eds.). (2020). Pharmaceutical dosage forms: Disperse systems. CRC Press.
Malucelli, L. C., Matos, M. D., Jordão, C., Lomonaco, D., Lacerda, L. G., Carvalho Filho, M. A. S., & Magalhães, W. L. E. (2019). Influence of cellulose chemical pretreatment on energy consumption and viscosity of produced cellulose nanofibers (CNF) and mechanical properties of nanopaper. Cellulose, 26, 1667-1681.
Mao, Y., Liu, K., Zhan, C., Geng, L., Chu, B., & Hsiao, B. S. (2017). Characterization of nanocellulose using small-angle neutron, X-ray, and dynamic light scattering techniques. The Journal of Physical Chemistry B, 121(6), 1340-1351.
Martinez, D. M., Buckley, K., Jivan, S., Lindstrom, A., Thiruvengadaswamy, R., Olson, J. A., … & Kerekes, R. J. (2001, September). Characterizing the mobility of papermaking fibres during sedimentation. In The science of papermaking: transactions of the 12th fundamental research symposium, Oxford. The Pulp and Paper Fundamental Research Society, Bury, UK (pp. 225-254).
Melo, A. R. A., Dutra Filho, J. C., Neto, R. P. C., Ferreira, W. S., Archanjo, B. S., Curti, R. V., & Tavares, M. I. B. (2020). Effect of ultra-turrax on nanocellulose produced by acid hydrolysis and modified by nano ZnO by sol-gel method. Materials Sciences and Applications, 11(02), 150.
Mishra, S. P., Manent, A. S., Chabot, B., & Daneault, C. (2012). The use of sodium chlorite in post-oxidation of TEMPO-oxidized pulp: Effect on pulp characteristics and nanocellulose yield. Journal of wood chemistry and technology, 32(2), 137-148.
Mocchiutti, P., Schnell, C. N., Rossi, G. D., Peresin, M. S., Zanuttini, M. A., & Galván, M. V. (2016). Cationic and anionic polyelectrolyte complexes of xylan and chitosan. Interaction with lignocellulosic surfaces. Carbohydrate polymers, 150, 89-98.
Pandey, A. (2021). Pharmaceutical and biomedical applications of cellulose nanofibers: a review. Environmental Chemistry Letters, 19(3), 2043-2055.
Saito, T., Nishiyama, Y., Putaux, J. L., Vignon, M., & Isogai, A. (2006). Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules, 7(6), 1687-1691.
Sanchez‐Salvador, J. L., Campano, C., Negro, C., Monte, M. C., & Blanco, A. (2021). Increasing the Possibilities of TEMPO‐Mediated Oxidation in the Production of Cellulose Nanofibers by Reducing the Reaction Time and Reusing the Reaction Medium. Advanced Sustainable Systems, 5(4), 2000277.
Sarr, M. M., & Kosaka, T. (2023). Effect of cellulose nanofibers on the fracture toughness mode II of glass fiber/epoxy composite laminates. Heliyon, 9(2).
Schnell, C. N., Galván, M. V., Peresin, M. S., Inalbon, M. C., Vartiainen, J., Zanuttini, M. A., & Mocchiutti, P. (2017). Films from xylan/chitosan complexes: preparation and characterization. Cellulose, 24, 4393-4403.
Schnell, C., Mohit S., Pedrosa, J. F. S., Inalbon, M. C., Zanuttini, M. A., Mocchiutti, P., Ferreira, P. J.T. Natural Polyelectrolyte Complexes with Micro/Nano Fibrillated Cellulose for Improving Paper Barrier Properties. Congreso Iberamericano de Investigación en Celulosa y Papel (CIADICYP). 28 al 1 de julio del 2022, Girona, España.
Serra-Parareda, F., Tarrés, Q., Mutjé, P., Balea, A., Campano, C., Sánchez-Salvador, J. L., Negro C. & Delgado-Aguilar, M. (2021). Correlation between rheological measurements and morphological features of lignocellulosic micro/nanofibers from different softwood sources. International Journal of Biological Macromolecules, 187, 789-799.
Sharma, M., Aguado, R., Murtinho, D., Valente, A. J., De Sousa, A. P. M., & Ferreira, P. J. (2020). A review on cationic starch and nanocellulose as paper coating components. International journal of biological macromolecules, 162, 578-598.
Siró, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17, 459-494.
Solier, Y. N., Schnell, C. N., Galván, M. V., Mocchiutti, P., Zanuttini, M. Á., & Inalbon, M. C. (2022). Fast preparation of flexible wet-resistant and biodegradable films from a stable suspension of xylan/chitosan polyelectrolyte complexes. Journal of Polymers and the Environment, 30(1), 114-124.
Soni, R., Asoh, T. A., & Uyama, H. (2020). Cellulose nanofiber reinforced starch membrane with high mechanical strength and durability in water. Carbohydrate polymers, 238, 116203.
Taipale, T., Österberg, M., Nykänen, A., Ruokolainen, J., & Laine, J. (2010). Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose, 17, 1005-1020.
Tanpichai, S., Witayakran, S., Srimarut, Y., Woraprayote, W., & Malila, Y. (2019). Porosity, density and mechanical properties of the paper of steam exploded bamboo microfibers controlled by nanofibrillated cellulose. Journal of Materials Research and Technology, 8(4), 3612-3622.
Tarrés, Q., Oliver-Ortega, H., Boufi, S., Pèlach, M. À., Delgado-Aguilar, M., & Mutjé, P. (2020). Evaluation of the fibrillation method on lignocellulosic nanofibers production from eucalyptus sawdust: A comparative study between high-pressure homogenization and grinding. International journal of biological macromolecules, 145, 1199-1207.
Varanasi, S., He, R., & Batchelor, W. (2013). Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose, 20, 1885-1896.
Xie, H., Du, H., Yang, X., & Si, C. (2018). Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. International Journal of Polymer Science, 2018.
Xu, X., Zhou, J., Jiang, L., Lubineau, G., Ng, T., Ooi, B. S., Liao, H., Shen, C., Chen, L. & Zhu, J. Y. (2016). Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. Nanoscale, 8(24), 12294-12306.
Zhang, L., Batchelor, W., Varanasi, S., Tsuzuki, T., & Wang, X. (2012). Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose, 19, 561-574.