Diego Gomez Maldonado
Auburn University
0000-0003-4199-4091
Silvia Patricia Ponce Álvarez
Universidad Nacional Agraria La Molina (UNALM)
0000-0003-1583-7113
Maria Soledad Peresin
Auburn University
0000-0003-2619-5320
Acerca de
Existe un interés creciente en el uso de materiales de origen natural para generar materiales adsorbentes que puedan mejorar la calidad del agua mediante la eliminación de contaminantes de origen industrial, como los tintes. En este trabajo, se prepararon esferas compuestas a partir de nanofibrilas de celulosa (CNF) y goma de Tara (TG) mediante su codiso-lución en un medio alcalino de úrea/ hidróxido sódico seguido de corregeneración en un medio ácido. Las esferas obtenidas se caracterizaron mediante Infrarrojo con transformada de Fourier con reflectancia total atenuada (FTIR-ATR), Difracción de Rayos X (XRD), Análisis termogravimétrico (TGA), Análisis elemental (EA), y Microscopía electrónica de barrido (SEM), mientras que…
… la capacidad de adsorción estuvo seguida de mediciones en espectroscopía UV-Visible. Los resultados mostraron que la sustitución de hasta el 40 % de CNF por TG resultó en esferas ligeras con un contenido sólido menor al 54 % que mantenían dimensiones similares. Estas esferas se sometieron a pruebas de adsorción de azul de metileno (MB) con distintas concentraciones de sorbente y contaminante. Se seleccionó el azul de metileno por ser un colorante común utilizado como indicador redox para la tinción de tejidos, pruebas de productos lácteos, microbiología y la industria textil y del cuero. En general, las esferas compuestas de TG-CNF mostraron un mejor rendimiento en la adsorción de colorantes, con un 39,6 % más de captura en comparación con las esferas de celulosa pura. La capacidad máxima de adsorción se calculó en 13,7 mg/g, utilizando una isoterma de adsorción (2-15 ppm) ajustada al modelo de Langmuir.
Referencias
Adamson, A. W., & Gast, A. P. (1997). Physical Chemistry of Surfaces (6th ed.). Wiley-Interscience publication.
Ali, I. (2012). New generation adsorbents for water treatment. Chemical Reviews, 112, 5073–5091. https://doi.org/10. 1021/cr300133d
Bartczak, P., Klapiszewski, Ł, Wysokowski, M., et al. (2017). Treatment of model solutions and wastewater containing selected hazardous metal ions using a chitin/lignin hybrid material as an effective sorbent. Journal of Environmen- tal Management, 204, 300–310. https://doi.org/10.1016/j. jenvman.2017.08.059
Cai, Z., Sun, Y., Liu, W., et al. (2017). An overview of nanoma- terials applied for removing dyes from wastewater. Envi- ronmental Science and Pollution Research, 24, 15882– 15904. https://doi.org/10.1007/s11356-017-9003-8
Cao, X., Wang, X., Ding, B., Yu, J., & Sun, G. (2013). Novel spider-web-like nanoporous network based on jute cellu- lose nanowhiskers. Carbohydrate Polymers, 92(2), 2041– 2047. https://doi.org/10.1016/j.carbpol.2012.11.085
Chen, Y., Xu, L., Wang, Y., et al. (2020). Characterization and functional properties of a pectin/tara gum based edible film with ellagitannins from the unripe fruits of Rubus chingii Hu. Food Chemistry, 325, 126964. https://doi.org/ 10.1016/j.foodchem.2020.126964
Dai, H., Chen, Y., Ma, L., et al. (2021). Direct regeneration of hydrogels based on lemon peel and its isolated micro- crystalline cellulose: Characterization and application for methylene blue adsorption. International Journal of Bio- logical Macromolecules, 191, 129–138. https://doi.org/10. 1016/j.ijbiomac.2021.09.063
El Qada, E. N., Allen, S. J., & Walker, G. M. (2006). Adsorp- tion of Methylene Blue onto activated carbon produced from steam activated bituminous coal: A study of equilib- rium adsorption isotherm. Chemical Engineering Journal, 124, 103–110. https://doi.org/10.1016/j.cej.2006.08.015
Fan, M., Dai, D., & Huang, B. (2012). Fourier transform infrared spectroscopy for natural fibres. Fourier Transform – Materials Analysis. https://doi.org/10.5772/35482
Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of syn- thetic dyes from wastewaters: A review. Environment International, 30, 953–971. https://doi.org/10.1016/j. envint.2004.02.001
Freundlich, H. (1907). Über die adsorption in Lösungen. Zeitschrift Für Phys Chemie, 57U, 385–470. https://doi.org/ 10.1515/zpch-1907-5723
Gomez-Maldonado, D., Filpponen, I., Johansson, L. S., et al. (2021a). Environmentally dependent adsorption of 2,4-dichlorophenol on cellulose-chitosan self-assembled composites. Biopolymers. https://doi.org/10.1002/bip.23434
Gómez-Maldonado D, Hernández-Guerrero M, López-Simeon R, et al (2020) Lignocellulosic-derived nanostruc- tures from latin american natural resources: Extraction, preparation, and applications. In: Lignocellulosics. Else- vier, pp 91–115
Gong, J., Li, J., Xu, J., et al. (2017). Research on cellulose nanocrystals produced from cellulose sources with vari- ous polymorphs. RSC Advances, 7, 33486–33493. https:// doi.org/10.1039/c7ra06222b
Gürses A, Açıkyıldız M, Güneş K, Gürses MS (2016) Clas- sification of dye and pigments. In: Dyes and pigments. Springer, pp 31–45
Jonoobi, M., Oladi, R., Davoudpour, Y., et al. (2015). Differ- ent preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review. Cellulose, 22, 935–969. https://doi.org/10.1007/ s10570-015-0551-0
Kardam, A., Raj, K. R., Srivastava, S., & Srivastava, M. M. (2014). Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Tech- nologies and Environmental Policy, 16, 385–393. https:// doi.org/10.1007/s10098-013-0634-2
Klemm, D., Kramer, F., Moritz, S., et al. (2011). Nanocellu- loses: A new family of nature-based materials. Ange- wandte Chemie, International Edition, 50, 5438–5466. https://doi.org/10.1002/anie.201001273
Lang, A. R. (2009). Dyes and pigments: new research. Nova Science Publishers.
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.
Larsson, E., Sanchez, C. C., Porsch, C., et al. (2013). Thermo- responsive nanofibrillated cellulose by polyelectrolyte adsorption. European Polymer Journal, 49, 2689–2696. https://doi.org/10.1016/j.eurpolymj.2013.05.023
Liu, Y. (2008). New insights into pseudo-second-order kinetic equation for adsorption. Colloids and Surfaces A: Physico- chemical and Engineering Aspects, 320, 275–278. https:// doi.org/10.1016/j.colsurfa.2008.01.032
Liu, J., Wang, L., Li, J., et al. (2020). Degradation mechanism of Acacia mangium tannin in NaOH/urea aqueous solu- tion and application of degradation products in phenolic adhesives. International Journal of Adhesion and Adhe- sives, 98, 102556. https://doi.org/10.1016/j.ijadhadh.2020.102556
Lombardo, S., & Thielemans, W. (2019). Thermodynamics of adsorption on nanocellulose surfaces. Cellulose, 26, 249– 279. https://doi.org/10.1007/s10570-018-02239-2
Long, L. Y., Weng, Y. X., & Wang, Y. Z. (2018). Cellulose aerogels: Synthesis, applications, and prospects. Polymers (basel), 8, 1–28. https://doi.org/10.3390/polym10060623
Lopez-Sanchez, P., Schuster, E., Wang, D., et al. (2015). Diffu- sion of macromolecules in self-assembled cellulose/hemi- cellulose hydrogels. Soft Matter, 11, 4002–4010. https:// doi.org/10.1039/c5sm00103j
Luan, Q., Zhang, H., Lei, Y., et al. (2021). Microporous regenerated cellulose-based macrogels for covalent immobilization of enzymes. Cellulose, 28, 5735–5744. https://doi.org/10.1007/s10570-021-03887-7
Ma, Q., & Wang, L. (2016). Preparation of a visual pH-sens- ing film based on tara gum incorporating cellulose and extracts from grape skins. Sensors Actuators, B Chem, 235, 401–407. https://doi.org/10.1016/j.snb.2016.05.107
Ma, Q., Hu, D., & Wang, L. (2016). Preparation and physi- cal properties of tara gum film reinforced with cellulose nanocrystals. International Journal of Biological Mac- romolecules, 86, 606–612. https://doi.org/10.1016/j.ijbio mac.2016.01.104
Mahmoud, H. R., El-Molla, S. A., & Saif, M. (2013). Improve- ment of physicochemical properties of Fe2O3/MgO nano- materials by hydrothermal treatment for dye removal from industrial wastewater. Powder Technology, 249, 225–233. https://doi.org/10.1016/j.powtec.2013.08.021
Mohammed, N., Grishkewich, N., Berry, R. M., & Tam, K. C. (2015). Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solu- tions. Cellulose, 22, 3725–3738. https://doi.org/10.1007/ s10570-015-0747-3
Mokhtar, A., Abdelkrim, S., Djelad, A., et al. (2020). Adsorp- tion behavior of cationic and anionic dyes on magadiite- chitosan composite beads. Carbohydrate Polymers, 229, 115399. https://doi.org/10.1016/j.carbpol.2019.115399
Mondal, H., Karmakar, M., Chattopadhyay, P. K., & Singha, N. R. (2019). Starch-g-tetrapolymer hydrogel via in situ attached monomers for removals of Bi(III) and/or Hg(II) and dye(s): RSM-based optimization. Carbohydrate Poly- mers, 213, 428–440. https://doi.org/10.1016/j.carbpol. 2019.02.035
Ponce, S., Chavarria, M., Norabuena, F., et al. (2020). Cellu- lose microfibres obtained from agro-industrial tara waste for dye adsorption in water. Water, Air, and Soil Pollution, 231,. https://doi.org/10.1007/s11270-020-04889-0
Prado, B. M., Kim, S., Özen, B. F., & Mauer, L. J. (2005). Differentiation of carbohydrate gums and mixtures using fourier transform infrared spectroscopy and che- mometrics. Journal of Agriculture and Food Chemistry, 53, 2823–2829. https://doi.org/10.1021/jf0485537
Prasad, K., Mine, S., Kaneko, Y., & Kadokawa, J. I. (2010). Preparation of cellulose-based ionic porous material com- patibilized with polymeric ionic liquid. Polymer Bulletin, 64, 341–349. https://doi.org/10.1007/s00289-009-0144-x
Qiu, X., & Hu, S. (2013). “Smart” materials based on cellulose: A review of the preparations, properties, and applications. Mate- rials (basel), 6, 738–781. https://doi.org/10.3390/ma6030738
Rahimian, R., & Zarinabadi, S. (2020). A review of studies on the removal of methylene blue dye from industrial wastewater using activated carbon adsorbents made from almond bark. Progress in Chemical and Biochemical Research, 3, 251–268.
Ruan, C., Strømme, M., & Lindh, J. (2016). A green and simple method for preparation of an efficient palladium adsorbent based on cysteine functionalized 2,3-dialde- hyde cellulose. Cellulose, 23, 2627–2638. https://doi.org/ 10.1007/s10570-016-0976-0
Ruan, C. Q., Strømme, M., & Lindh, J. (2018). Preparation of porous 2,3-dialdehyde cellulose beads crosslinked with chi- tosan and their application in adsorption of Congo red dye. Carbohydrate Polymers, 181, 200–207. https://doi.org/10. 1016/j.carbpol.2017.10.072
Shore, J. (2002). Colorants and auxiliaries : organic chem- istry and application properties. Society of Dyers and Colourists.
Tran, C. D., Duri, S., Delneri, A., & Franko, M. (2013). Chi- tosan-cellulose composite materials : Preparation, char- acterization and application for removal of microcystin. Journal of Hazardous Materials, 253, 355–366.
Trygg, J., & Fardim, P. (2011). Enhancement of cellulose dis- solution in water-based solvent via ethanol-hydrochloric acid pretreatment. Cellulose, 18, 987–994. https://doi.org/ 10.1007/s10570-011-9550-y
Trygg, J., Fardim, P., Gericke, M., et al. (2013). Physicochemi- cal design of the morphology and ultrastructure of cellulose beads. Carbohydrate Polymers, 93, 291–299. https://doi.org/ 10.1016/j.carbpol.2012.03.085
Trygg, J., Yildir, E., Kolakovic, R., et al. (2014). Anionic cellulose beads for drug encapsulation and release. Cellulose, 21, 1945–1955. https://doi.org/10.1007/ s10570-014-0253-z
Trygg, J., Yildir, E., Kolakovic, R., et al. (2015). Solid-state prop- erties and controlled release of ranitidine hydrochloride from tailored oxidised cellulose beads. Macromolecular Materi- als and Engineering, 300, 210–217. https://doi.org/10.1002/ mame.201400175
Wang, D. M., Hao, G., Shi, Q. H., & Sun, Y. (2007). Fabri- cation and characterization of superporous cellulose bead for high-speed protein chromatography. Journal of Chro- matography A, 1146, 32–40. https://doi.org/10.1016/j. chroma.2007.01.089
Wang, J., Wei, L., Ma, Y., et al. (2013). Collagen/cellulose hydrogel beads reconstituted from ionic liquid solution for Cu(II) adsorption. Carbohydrate Polymers, 98, 736–743. https://doi.org/10.1016/j.carbpol.2013.06.001
Wang, X., Jiang, C., Hou, B., et al. (2018). Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemos- phere, 206, 587–596. https://doi.org/10.1016/j.chemosphere.2018.04.183
Wu, Y., Ding, W., Jia, L., & He, Q. (2015). The rheological properties of tara gum (Caesalpinia spinosa). Food Chem- istry, 168, 366–371. https://doi.org/10.1016/j.foodchem.2014.07.083
Yamane, C., Aoyagi, T., Ago, M., Sato, K., Okajima, K., & Takahashi, T. (2006). Two different surface properties of regenerated cellulose due to structural anisotropy. Polymer Journal, 38, 819–826. https://doi.org/10.1295/polymj. PJ2005187
Zhang, L., Zhou, J., & Zhang, L. (2013). Structure and prop- erties of β-cyclodextrin/cellulose hydrogels prepared in NaOH/urea aqueous solution. Carbohydrate Polymers, 94, 386–393. https://doi.org/10.1016/j.carbpol.2012.12.077