
ISBN
979-13-87631-36-9
Fecha de publicación
28-12-2024
Licencia
D. R. © copyright 2024; Aurora Irma Máynez Guaderrama y Virginia Guadalupe López Torres.
Luis Ricardo Vidal Portilla
Universidad Autónoma de Ciudad Juárez
0000-0001-5248-5845
Salvador Noriega Morales
Universidad Autónoma de Ciudad Juárez
0000-0001-7813-5835
Jesús Andrés Hernández Gómez
Universidad Autónoma de Ciudad Juárez
0000-0003-2325-2051
Erwin Adam Martinez Gomez
Universidad Autónoma de Ciudad Juárez
0000-0002-7753-2545
Acerca de
Advanced Manufacturing Technology (AMT) is essential for achieving manufacturing companies’ strategic goals by enhancing product development, planning, processes, and control. It strategically optimizes business activities and serves as a model to adapt to the operating environment. AMT, as both an approach and philosophy, efficiently integrates design and manufacturing functions through computer systems and data management (Azemi et al., 2019; Bedworth et al., 1991; Wilhelm & Parsaei, 1991; Yu et al., 2015). The widespread adoption of AMT brings both quantitative and qualitative benefits across various production stages, including product design, manufacturing planning, material handling, real-time tracking, and product quality improvement (Berman et al., 2009; Cotton & Schinski 1999; Marri et al., 2000). However, organizational structural changes are often necessary for successful adoption because of technological complexity, as noted by Lucianetti et al. (2018) and Saberi et al. (2010). Although extensive literature exists in AMT implementation processes, effectiveness, and associated risks, much of it remains anecdotal and controversial. Although it constitutes valuable empirical evidence, it is not conclusive. Therefore, it is crucial to conduct cutting-edge research on the factors influencing its effectiveness.
AMT evaluation is crucial during the planning phase. Assessment must be correct, objective and comprehensive to select the best option (Lakymenko, Alfned & Thomassen, 2016). It should consider diverse interests, including long-term effects, competitiveness, equipment reliability, user-friendliness, and other variables (lo Storto, 2018). Effective planning requires analyzing various qualitative and quantitative factors, understanding their interplay within and outside the company, and assessing the industrial environment (Al-Ahmari, 2008). This ensures a confident decision regarding the technology that best fosters business development and competitiveness. The subsequent paragraphs discuss some models for evaluating these factors and their associated challenges (Ocampo, Hernández-Matías & Vizán, 2017).
Referencias
Ahuja, I. P. S. & Khamba, J. S. (2008). Assessment of contributions of successful TPM initiatives towards competitive manufacturing. Journal of Quality in Maintenance Engineering, 14(4), 356-374. https://doi.org/10.1108/13552510810909966
Al-Ahmari, A.M.A. (2008). A methodology for selection and evaluation of advanced manufacturing technologies. International Journal of Computer Integrated Manufacturing, 21(7), 778-789. https://doi.org/10.1080/09511920701678825
Aravidan, P., Punniyamoorthy, M. (2002). Justification of Advanced Manufacturing Technologies (AMT). Int J Adv Manuf Technol, 21(7), 778-789.
Azemi, F., Šimunović, G., Lujić, R., Tokody, D., Rajnai, Z. (2019). The use of advanced manufacturing technology to reduce product cost. Acta Polytech Hungarica, 16(7), 115-131.
Bai, C., Sarkis, J. (2017). Improving green flexibility through advanced manufacturing technology investment: Modeling the decision process. Int J Prod Econ, 188, 86-10. https://doi.org/10.1016/j.ijpe.2017.03.013
Bedworth, D. D., Henderson, M. R. & Wolfe, P. M. (1991). Computer Integrated Design and Manufacturing. McGraw-Hill.
Berman, S., Schechtman, E. & Edan, Y. (2009). Evaluation of automatic guided vehicle systems. Robotics and Computer-Integrated Manufacturing, 25(3), 522-528. https://doi.org/10.1016/j.rcim.2008.02.009
Bhatt, N. (2016). Forecasting the Implementation Success of AMT in SMEs using an Integrated AHP-TOPSIS Approach. Global Journal of Enterprise Information System, 8(4), 18-28. https://doi.org/10.18311/gjeis/2016/15651
Boelzing, D. & Schulz, H. (1989). Calculating investments for integrated manufacturing: looking at the overall costs and benefits. International Journal of Computer Integrated Manufacturing, 2(6), 329-338. https://doi.org/10.1080/09511928908944421
Bülbül, H., Ömürbek, N., Paksoy, T., Bektaş T. (2013). An empirical investigation od advanced manufacturing technology investment patterns. Evidence from a developing country JET-M, 30(2), 136-156.
Byrne, B. M. (2006). Structural Equation Modeling With EQS Basic concepts, aplications, and programming. (2d Ed.). Lawrence Erlbaum Associates, Inc.
Capella Peris, C., Gil Gómez, J., Martí Puig, M. & Ruiz Bernardo, P. (2016). Construcción de un cuestionario para medir el emprendimiento social en educación física. Journal of Research in Social Pedagogy, 28, 169-188. https://doi.org/10.7179//PSRI_2016.28.13
Cescon, F. (2010). Investment in New Manufacturing Systems: An Italian-based empirical analysis. Economia Aziendale Online 2000 Web, 1, 13-26. http://dx.doi.org/10.4485/ea2038-5498.13-26
Chuu, S.-J. (2009). Selecting the advanced manufacturing technology using fuzzy multiple attributes group decision making with multiple fuzzy information. Computers & Industrial Engineering, 57(3), 1033-1042. https://doi.org/10.1016/j.cie.2009.04.011
Colín, E. N. (2007). Factores Organizacionales que Impactan en la Aplicación Exitosa de Células de Manufactura. Tesis de Maestría, Instituto Tecnológico de Ciudad Juárez, Ciudad Juárez, Chihuahua. México.
Cotton, W. D. J. & Schinski, M. (1999). Justifying Capital Expenditures in New Technology: A Survey. The Engineering Economist, 44(4), 362-376. https://doi.org/10.1080/00137919908967529
Dangayach, GS., Pathak, S., Sharma, A. (2006). Advanced Manufacturing Technology: A way of Improving Technological Competitiveness. Int J. Glob. Bus. Compet, 2(1), 1-8.
Escobedo, M., Hernández, J., Estebane, V. & Martínez, E. (2016). Modelos de Ecuaciones Estructurales: Características, Fases, Construcción, Aplicación y Resultados. Ciencia y Trabajo, 55, 16-22. http://dx.doi.org/10.4067/S0718-24492016000100004.
Evans, L., Lohse, N., Tan, K. H., Webb, P. & Summers, M. (2012). Justification for the selection of manufacturing technologies: a fuzzy-decision-tree-based approach. International Journal of Production Research, 50(23), 6945-6962. https://doi.org/10.1080/00207543.2011.638943
Falkner, C. H. & Benhajla, S. (1990). Multi-Attribute Decision Models in the Justification of CIM Systems. The Engineering Economist, 35(2), 91-114. https://doi.org/10.1080/00137919008903008
Gervásio, H. & Simões da Silva, L. (2012). A probabilistic decision-making approach for the sustainable assessment of infrastructures. Expert Systems with Applications, 39(8), 7121-7131. https://doi.org/10.1016/j.eswa.2012.01.032
Ghobakhloo, M., Hong, TS. (2014). IT investments and business performance improvement: the mediating role of lean manufacturing implementation. Int J Prod Res, 52(18), 5367-5384.
Göleç, A. & Taşkın, H. (2007). Novel methodologies and a comparative study for manufacturing systems performance evaluations. Information Sciences, 177(23), 5253-5274. https://doi.org/10.1016/j.ins.2007.06.024
Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. (2014). Multivariate Data Analysis. (7th ed.). Pearson Education Limited.
Hayes, R. H. & Wheelwright, S. (1984). Restoring Our Competitive Edge: Competing Through Manufacturing. Wiley & Sons.
Hernández, A., Escobar Toledo, C., Larios Prado, J. M., & Noriega, S. (2015). Factores críticos de éxito para el despliegue del mantenimiento productivo total en plantas de la industria maquiladora para la exportación en Ciudad Juárez: una solución factorial. Contaduría y Administración, 60(S1), 82-106. https://doi.org/10.1016/j.cya.2015.08.005
Hernández, S., Fernandez, C. & Baptista, L. (2014). Metodología de la investigación. (6th Ed.). (Reprinted from: Sexta). M. Graw-Hill.
Hitomi, K. (1990). Manufacturing systems engineering: the concept, its context and the state of the art. International Journal of Computer Integrated Manufacturing, 3(5), 275-288. https://doi.org/10.1080/09511929008944456
Hon, K. K. B. (2005). Performance and Evaluation of Manufacturing Systems. CIRP Annals – Manufacturing Technology, 54(2), 139-154. https://doi.org/10.1016/S0007-8506(07)60023-7
Hooper, D., Coughlan, J. & Mullen, M. R. (2008). Structural Equation Modelling: Guidelines for Determining Model Fit. Electronic Journal of Business Research Methods, 6(1), 53-60.
Huang, C.-C., Wang, Y.-M., Wu, T.-W. & Wang, P.-A. (2013). An Empirical Analysis of the Antecedents and Performance Consequences of Using the Moodle Platform. International Journal of Information and Education Technology, 3(2), 217-221. http://www.ijiet.org/papers/267-IT0040.pdf
Kaplan, R.S. & Atkinson, A.A. (1989). Advanced Management Accounting. Prentice Hall. https://books.google.com.mx/books?id=hEEnngEACAAJ
Konecny, P. A. & Thun, J.-H. (2011). Do it separately or simultaneously-An empirical analysis of a conjoint implementation of TQM and TPM on plant performance. International Journal of Production Economics, 133(2), 496-504. https://doi.org/10.1016/j.ijpe.2010.12.009
Iakymenko, N., Alfnes, E. & Thomassen, M.K. (2016). A differentiated approach for justification of advanced manufacturing technologies. Adv. Manuf. 4, 257–267. https://doi.org/10.1007/s40436-016-0150-9
Liberatore, M. J., Monahan, T. F. & Stout, D. E. (1992). A Framework for Integrating Capital Budgeting Analysis with Strategy. The Engineering Economist, 38(1), 31-43. https://doi.org/10.1080/00137919208903085
Lin, D., Lee, CK., Lau, H., Yang, Y. (2018). Strategic response to Industry 40: an empirical investigation on the Chinese automotive industry. Industrial Management & Data Systems, 118(3), 589-605. https://doi.org/10.1108/IMDS-09-2017-0403
Lloret-Segura, S., Ferrerest-Traver, A., Hernandez-Baeza, A. & Tomás-Marco, I. (2014). El análisis factorial exploratorio de los ítems: una guía práctica, revisada y actualizada. Anales de Psicología, 30(3), 1151-1169. http://dx.doi.org/10.6018/analesps.30.3.199361
lo Storto. (2018). A double-DEA framework to support decision-making in the choice of advanced manufacturing technologies. Management Decision, 56(2), 488-507. https://doi.org/10.1108/MD-09-2016-0644
Lucianetti, L., Jabbour, C., J., C., Gunasekaran, A., & Latan, H. (2018). Contingency factors and complementary effects of adopting advanced manufacturing tolos and managerial practices: Effects on organizational measurement systems and firms’ perfomance. J Prod Econ, 200, 318-328. https://doi.org/10.1016/j.ijpe.2018.04.005
Madu, C. N. & Georgantzas, N. C. (1991). Strategic Thrust of Manufacturing Automation Decisions: A Conceptual Framework. IIE Transactions, 23(2), 138-148. https://doi.org/10.1080/07408179108963849
Marri, H. B., Gunasekaran, A. & Grieve, R. J. (2000). Performance measurements in the implementation of CIM in small and medium enterprises: An empirical analysis. International Journal of Production Research, 38(17), 4403-4411. https://doi.org/10.1080/00207540050205181
Medrano, L. A. & Muñoz-Navarro, R. (2017). Aproximación conceptual y práctica a los Modelos de Ecuaciones Estructurales. Revista Digital de Investigación en doncencia Universitaria, 11(1), 219-239. http://dx.doi.org/10.19083/ridu.11.486
Michell, F. H. (1991). CIM System. An Introduction to Computer Integrated Manufacturing. Prentice-Hall.
Mkrkdtth, J. R. & Surksh, N. C. (1986). Justification techniques for advanced manufacturing technologies. Int. J. Prod. Res, 24(5), 1043-1057. https://doi.org/10.1080/00207548608919787
Mohanty, R. P. & Venkatraman, S. (1993). Justification study for computer integrated manufacturing. International Journal of Computer Integrated Manufacturing, 6(6), 366-374. https://doi.org/10.1080/09511929308944588
Nath, S., Sarkar, B. (2017). Performance evaluation of advanced manufacturing technologies: A De novo approach. Computers & Industrial Engineering, 110, 364-378. https://doi.org/10.1016/j.cie.2017.06.018
Niaki, MK., Torabi, SA., Nonino, F. (2019). Why manufacturers adopt additive manufacturing technologies: The role of sustainability. Journal of Cleaner Production, 222, 381-392. https://doi.org/10.1016/j.jclepro.2019.03.019
Ocampo, J. R., Hernández-Matías, J. C. & Vizán, A. (2017). A method for estimating the influence of advanced manufacturing tools on the manufacturing competitiveness of Maquiladoras in the apparel industry in Central America. Computers in Industry, 87, 31-51. https://doi.org/10.1016/j.compind.2017.02.001
Olfati, M., Yuan, W., Nasseri, S. H. (2020). An integrated model of fuzzy multi-criteria decision making and stochastic programming for the evaluating and ranking of advanced manufacturing technologies. Iran J Fuzzy Syst, 17(5), 183-196. https://doi.org/10.22111/ijfs.2020.5524
Ordoobadi, SM. (2013). Application of AHP and Taguchi loss functions in evaluation of advanced manufacturing technologies. Int J Adv Manuf Technol, 67, 2593–2605. https://doi.org/10.1007/s00170-012-4676-0
Saberi, S., Mohd, R., Yusuff N, Z., & Ahmad, M. M. H. M. (2010). Effective factors on Advanced Maufacturing Technology Implementation Performance: A review. Journal of Applied Sciences, 10(13), 1229-1242. https://scialert.net/abstract/?doi=jas.2010.1229.1242
Sherman, B., Suresh, N., & Rao, H. (1993). Evaluation of flexible automation investments: a model management perspective. Journal of Intelligent Manufacturing, 4(5), 307-322. https://doi.org/10.1007/BF00123777
Terziovski, M. (2010). Innovation practice and its performance implications in small and medium enterprises (SMEs) in the manufacturing sector: a resource-based view. Strategic Management Journal, 31(8), 892-902. https://doi.org/10.1002/smj.841
Ullman, J. B., & Bentler, P. M. (2013). Handbook of Psychology. (2d ed.): New Jersey, USA. John Wiley & Sons, Inc. https://doi.org/10.1002/9781118133880
Waldeck, & Leffakis, Z. M. (2007). HR perceptions and the provision of workforce training in an AMT environment: An empirical study. Omega. 35(2), 161-172. https://doi.org/10.1016/j.omega.2005.05.001
Wang, I., Yi Wu, C., & Kreng, V. B. (2011). Strategic justification of advanced manufacturing technology using an extended AHP model. Int J Adv Manuf Technol, 52, 1103-1113. https://doi.org/10.1007/s00170-010-2805-1
Wang, K.-J., & Hong, W.-C. (2011). Competitive advantage analysis and strategy formulation of airport city development—The case of Taiwan. Transport Policy, 18(1), 276-288. https://doi.org/10.1016/j.tranpol.2010.08.011
Wilhelm, M. R., & Parsaei, H. R. (1991). A fuzzy linguistic approach to implementing a strategiy for computer integrated manufacturing. Fuzzy Sets and Systems, 42(2), 191-204. https://doi.org/10.1016/0165-0114(91)90145-G
Yu, C., Xu, X., & Lu, Y. (2015). Computer-Integrated Manufacturing, Cyber-Physical Systems and Cloud Manufacturing – Concepts and relationships. Manufacturing Letters, 6, 5-9. https://doi.org/10.1016/j.mfglet.2015.11.005