
ISBN
979-13-87631-36-9
Fecha de publicación
28-12-2024
Licencia
D. R. © copyright 2024; Aurora Irma Máynez Guaderrama y Virginia Guadalupe López Torres.
Sandra Nelly Leyva Hernández
Universidad Autónoma de Baja California
0000-0002-5687-9945
Arcelia Toledo López
Instituto Politécnico Nacional
0000-0002-2328-5438
Leonardo Ramos López
Universidad Autónoma de Baja California
0000-0003-3721-4216
Acerca de
El análisis multivariado ha evolucionado hacia técnicas de segunda generación como el modelado de ecuaciones estructurales que integra técnicas como el análisis factorial y el análisis de regresión lineal (Hair et al., 2017; Williams et al., 2009). Este tipo de modelado se divide en el basado en covarianza y basado en varianza (Rigdon et al., 2017).
La aplicación del modelado de ecuaciones estructurales basado en covarianzas considera supuestos estrictos como datos normales y tamaños de muestra grandes. Mientras que el modelado de ecuaciones estructurales por mínimos cuadrados parciales (Partial Least Squares Structual Equation Modeling, o PLS-SEM por sus siglas en inglés) es menos restrictivo, analiza modelos complejos y tamaños de muestra más reducidos (Hair et al., 2011). Se recomienda PLS-SEM para modelos complejos con más de 5 constructos y más de 6 indicadores por constructo (Sarstedt et al., 2014). Además, ofrece resultados de análisis que otros métodos no proporcionan, como la predicción en modelos de investigación (Nitzl y Chin, 2017). PLS-SEM no requiere normalidad de datos o una muestra grande y además puede estimar modelos de medición formativos y reflectivos (Ruiz et al., 2010).
Diferentes estudios muestran la aplicación de PLS-SEM en varias disciplinas (Roemer, 2016). Existe un aumento notorio de su uso en la investigación en negocios, en sistemas de información de gestión, en marketing y en gestión estratégica (Sinkovics et al., 2016). Recientemente, esta técnica se ha aplicado en la investigación de mercado, para el análisis de capacidades de marketing (Takata, 2016), satisfacción del cliente y lealtad (Al-Msallam y Alhaddad, 2016). También se han hecho comparaciones del uso de tratamientos de datos por PLS consistente y PLS tradicional en un modelo de intención de comportamiento (Cheah et al., 2018). Se recomienda el uso de PLS-SEM para el análisis de mediación y moderación de estudios de marketing con muestras pequeñas y distribución de datos no normal (Wong, 2016). Sin embargo, son pocos los estudios que analizan la mediación por PLS-SEM, comparado con el uso de modelado de ecuaciones estructurales basado en covarianzas para este análisis (Nitzl et al., 2016). No obstante, no existe un acuerdo estadístico sobre los criterios adecuados de dichos análisis.
Referencias
Al-Msallam, S., & Alhaddad, A. (2016). Customer satisfaction and loyalty in the hotel industry: The mediating role of relationship marketing (PLS approach). Journal of Research in Business and Management, 4(5), 32-42.
Ali, F., Rasoolimanesh, S. M., Sarstedt, M., Ringle, C. M., & Ryu, K. (2018). An assessment of the use of partial least squares structural equation modeling (PLS-SEM) in hospitality research. International Journal of Contemporary Hospitality Management, 30(1), 514-538. https://doi.org/10.1108/IJCHM-10-2016-0568
Amoako, G. K., Anabila, P., Effah, E. A., & Kumi, D. K. (2017). Mediation role of brand preference on bank advertising and customer loyalty. International Journal of Bank Marketing. https://doi.org/10.1108/IJBM-07-2016-0092
Barclay, D., Higgins, C., & Thompson, R. (1995). The partial least squares (PLS) approach to casual modeling: personal computer adoption and use as an Illustration. Technology Studies, 2(2), 285-309.
Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(1),1173–1182.
Benitez, J., Henseler, J., Castillo, A., & Schuberth, F. (2020). How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Information & Management, 57(2), 103168. https://doi.org/10.1016/j.im.2019.05.003
Castro, I., & Roldán, J. L. (2013). A mediation model between dimensions of social capital. International Business Review, 22(6), 1034-1050. https://doi.org/10.1016/j.ibusrev.2013.02.004
Cheah, J. H., Memon, M. A., Chuah, F., Ting, H., & Ramayah, T. (2018). Assessing reflective models in marketing research: A comparison between pls and plsc estimates. International Journal of Business and Society, 19(1), 139-160. http://repo.uum.edu.my/id/eprint/25560
Chen, S. C., & Lin, C. P. (2019). Understanding the effect of social media marketing activities: The mediation of social identification, perceived value, and satisfaction. Technological Forecasting and Social Change, 140, 22-32. https://doi.org/10.1016/j.techfore.2018.11.025
Chin, W. W. (2010). How to write up and report PLS analyses. In Handbook of partial least squares (pp. 655-690). Springer, Berlin, Heidelberg
Choi, Y. J., & Park, J. W. (2017). The decision-making processes of duty-free shop users using a goal directed behavior model: The moderating effect of gender. Journal of Hospitality and Tourism Management, 31, 152-162. https://doi.org/10.1016/j.jhtm.2016.11.001
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, New York, NY.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.
Duarte, P. A. O., & Raposo, M. L. B. (2010). A PLS model to study brand preference: An application to the mobile phone market. In Handbook of partial least squares (pp. 449-485). Springer, Berlin, Heidelberg.
Ercan, I., Yazici, B., Sigirli, D., Ediz, B., & Kan, I. (2007). Examining Cronbach alpha, theta, omega reliability coefficients according to sample size. Journal of Modern Applied Statistical Methods, 6(1), 291-303. https://doi.org/10.22237/jmasm/1177993560
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
Goetzke, B., & Spiller, A. (2014). Health-improving lifestyles of organic and functional food consumers. British Food Journal, 116(3), 510-526. https://doi.org/10.1108/BFJ-03-2012-0073
Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM). Los Angeles, USA; Sage publications.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414-433 In: Esposito Vinzi V., Chin W., Henseler J., Wang H. (Eds), Handbook of Partial Least Squares (pp. 713-735). Berlin, Heidelberg: Springer. . https://doi.org/10.1007/s11747-q
Henseler, J., & Chin, W. W. (2010). A comparison of approaches for the analysis of interaction effects between latent variables using partial least squares path modeling. Structural Equation Modeling, 17(1), 82-109. https://doi.org/10.1080/10705510903439003
Henseler J. & Fassott G., 2010. Testing Moderating Effects in PLS Path Models: An Illustration of Available Procedures. En: Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H., eds. Handbook of partial least squares. Berlin, Heidelberg: Springer, 713-735.
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial management and data systems, 116(1), 2-20. https://doi.org/10.1108/IMDS-09-2015-0382
Kaufmann, H. R., Petrovici, D. A., Gonçalves Filho, C., & Ayres, A. (2016). Identifying moderators of brand attachment for driving customer purchase intention of original vs counterfeits of luxury brands. Journal of Business Research, 69(12), 5735-5747. https://doi.org/10.1016/j.jbusres.2016.05.003
Kumar, B., Manrai, A. K., & Manrai, L. A. (2017). Purchasing behaviour for environmentally sustainable products: A conceptual framework and empirical study. Journal of Retailing and Consumer Services, 34, 1-9. https://doi.org/10.1016/j.jretconser.2016.09.004
Kura, K. M., Shamsudin, F. M., & Chauhan, A. (2016). Organisational trust as a mediator between perceived organisational support and constructive deviance. International Journal of Business And Society, 17(1). https://doi.org/10.33736/ijbs.506.2016
Lee, H. J., & Yun, Z. S. (2015). Consumers’ perceptions of organic food attributes and cognitive and affective attitudes as determinants of their purchase intentions toward organic food. Food Quality and Preference, 39, 259-267. https://doi.org/10.1016/j.foodqual.2014.06.002
Lee, K. H., Bonn, M. A., & Cho, M. (2015). Consumer motives for purchasing organic coffee: The moderating effects of ethical concern and price sensitivity. International Journal of Contemporary Hospitality Management, 27(6), 1157-1180. https://doi.org/10.1108/IJCHM-02-2014-0060
Leyva-Hernández, S. N., Toledo-López, A., & Hernández-Lara, A. B. (2021). Purchase Intention for Organic Food Products in Mexico: The Mediation of Consumer Desire. Foods, 10(2), 245. http://dx.doi.org/10.3390/foods10020245
Martínez-Martínez, O. A., Ramírez-López, A., & Rodríguez-Brito, A. (2018). Validation of a Multidimensional Social Cohesion Scale: A Case in Urban Areas of Mexico. Sociological Methods and Research, 1-31. https://doi.org/10.1177/0049124118769112
Nitzl, C. (2016). The use of partial least squares structural equation modelling (PLS-SEM) in management accounting research: Directions for future theory development. Journal of Accounting Literature, 37, 19-35. https://doi.org/10.1016/j.acclit.2016.09.003
Nitzl, C., & Chin, W. W. (2017). The case of partial least squares (PLS) path modeling in managerial accounting research. Journal of Management Control, 28(2), 137-156. https://doi.org/10.1007/s00187-017-0249-6
Nitzl, C., Roldan, J. L., & Cepeda, G. (2016). Mediation analysis in partial least squares path modeling. Industrial Management & Data Systems. 116(9), 1849-1864. https://doi.org/10.1108/IMDS-07-2015-0302
Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory, New York, NY: McGraw-Hill.
Palacios J. & Vargas (2009). Medición efectiva de la calidad: Innovaciones en México. Trillas.
Pérez, E. R., & Medrano, L. A. (2010). Análisis factorial exploratorio: bases conceptuales y metodológicas. Revista Argentina de Ciencias del Comportamiento (RACC), 2(1), 58-66.
Perugini, M., & Bagozzi, R. P. (2001). The role of desires and anticipated emotions in goal-directed behaviours: Broadening and deepening the theory of planned behavior. British Journal of Social Psychology, 40(1), 79-98. https://doi.org/10.1348/014466601164704
Piriyakul, M., & Kerdpitak, C. (2011). Mediation effects of logistics performance on collaboration and firm performance of palm oil companies: PLS path modeling. Journal of Management and Sustainability, 1(1), 90-98.
Rasoolimanesh, S. M. (2022). Discriminant validity assessment in PLS-SEM: A comprehensive composite-based approach. Data Analysis Perspectives Journal, 3(2), 1-8.
Rigdon, E. E., Sarstedt, M., & Ringle, C. M. (2017). On comparing results from CB-SEM and PLS-SEM: Five perspectives and five recommendations. Marketing Zfp, 39(3), 4-16.
Ringle, C. M., Wende, S., y Becker, J.-M. 2022. “SmartPLS 4.” Boenningstedt: SmartPLS GmbH, http://www.smartpls.com.
Roemer, E. (2016). A tutorial on the use of PLS path modeling in longitudinal studies. Industrial Management and Data Systems, 116(9), 1901-1921. https://doi.org/10.1108/IMDS-07-2015-0317
Ruiz, D. M., Gremler, D. D., Washburn, J. H., & Cepeda, G. (2010). Reframing customer value in a service-based paradigm: An evaluation of a formative measure in a multi-industry, cross-cultural context. In Handbook of partial least squares (pp. 535-566). Springer, Berlin, Heidelberg.
Sarstedt M., Ringle C.M., & Hair J. F. (2017). Partial Least Squares Structural Equation Modeling. In: Homburg C., Klarmann M., Vomberg A. (Eds), Handbook of Market Research (pp. 1-40). Cham: Springer.
Sarstedt, M., Hair, J. F., Ringle, C. M., Thiele, K. O., & Gudergan, S. P. (2016). Estimation issues with PLS and CBSEM: Where the bias lies!. Journal of Business Research, 69(10), 3998-4010. https://doi.org/10.1016/j.jbusres.2016.06.007
Sarstedt, M., Ringle, C. M., Smith, D., Reams, R., & Hair Jr, J. F. (2014). Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. Journal of Family Business Strategy, 5(1), 105-115. https://doi.org/10.1016/j.jfbs.2014.01.002
Shmueli, G., Ray, S., Estrada, J. M. V., & Chatla, S. B. (2016). The elephant in the room: Predictive performance of PLS models. Journal of Business Research, 69(10), 4552-4564. https://doi.org/10.1016/j.jbusres.2016.03.049
Singh, A., & Verma, P. (2017). Factors influencing Indian consumers’ actual buying behaviour towards organic food products. Journal of Cleaner Production, 167, 473-483. https://doi.org/10.1016/j.jclepro.2017.08.106
Sinkovics, R. R., Richter, N. F., Ringle, C. M., & Schlaegel, C. (2016). A critical look at the use of SEM in international business research. International Marketing Review, 33(3), 376-404. https://doi.org/10.1108/IMR-04-2014-0148
Sobel, M. E. (1982), Asymptotic intervals for indirect effects in structural equations models. In S. Leinhart (Ed.), Sociological methodology (pp.290-312). Jossey-Bass.
Takata, H. (2016). Effects of industry forces, market orientation, and marketing capabilities on business performance: An empirical analysis of Japanese manufacturers from 2009 to 2011. Journal of Business Research, 69(12), 5611-5619. https://doi.org/10.1016/j.jbusres.2016.03.068
Theoharakis, V., Angelis, Y., & Batsakis, G. (2019). Architectural marketing capabilities of exporting ventures. International Marketing Review, 36(6), 1026-1041. https://doi.org/10.1108/IMR-02-2019-0081
Valaei, N., & Nikhashemi, S. R. (2017). Generation Y consumers’ buying behaviour in fashion apparel industry: a moderation analysis. Journal of Fashion Marketing and Management: An International Journal, 21(4), 523-543. https://doi.org/10.1108/JFMM-01-2017-0002
Vega-Vilca, J. C., & Guzmán, J. (2011). Regresión PLS y PCA como solución al problema de multicolinealidad en regresión múltiple. Revista de Matemática: Teoría y Aplicaciones, 18(1), 9-20. https://doi.org/10.15517/rmta.v18i1.2111
Wang, J., Tao, J., & Chu, M. (2020). Behind the label: Chinese consumers’ trust in food certification and the effect of perceived quality on purchase intention. Food Control, 108, 106825. https://doi.org/10.1016/j.foodcont.2019.106825
Werts, C. E., Linn, R. L., & Jöreskog, K. G. (1974). Interclass reliability estimates: testing structural assumptions. Educational and Psychological Measurement, 34, 25-33. https://doi.org/10.1177/001316447403400104
Williams, L. J., Vandenberg, R. J., & Edwards, J. R. (2009). Structural equation modeling in management research: A guide for improved analysis. The Academy of Management Annals, 3(1), 543-604. https://doi.org/10.5465/19416520903065683
Wong, K. K. K. (2016). Mediation analysis, categorical moderation analysis, and higher-order constructs modeling in Partial Least Squares Structural Equation Modeling (PLS-SEM): A B2B Example using SmartPLS. Marketing Bulletin, 26(l) 1-22.
Zhao, X., Lynch, J. G. & Chen, Q. (2010). Reconsidering Baron and Kenny: Myths and Truths about Mediation Analysis. Journal of Consumer Research, 37(3), 197-206. https://doi.org/10.1086/651257