Inteligencia Artificial: ni muy automatizada, ni muy ecológica

ISBN

Formato digital
978-84-10215-89-4

Fecha de publicación

14-11-2024

Licencia

D. R. © copyright 2024; José Antonio García Macías, Isaac de Jesús Palazuelos Rojo y Diego Alfredo Pérez Rivas.

Antonio de Jesús García Chávez
Universidad Autónoma de Baja California
0009-0003-9334-3343
José Antonio García Macías
Centro de Investigación Científica y de Educación Superior de Ensenada
0000-0002-4101-5933

Acerca de

Tras un largo periodo con relativamente poca actividad y resultados, en años recientes se ha generado un incremento en la cantidad de publicaciones científicas relacionadas con la inteligencia artificial (IA), con un crecimiento del 100 % desde 2010 (Stanford University, 2023). Hoy en día nos encontramos en una revolución en relación con la IA, y sus efectos repercuten mucho más allá de los confines de los laboratorios de investigación y las empresas tecnológicas, abarcando también los sectores industriales y de gobierno. Esto se vuelve claro al analizar el aumento en el número de incidentes y controversias relacionados al uso indebido de la IA; los últimos reportes indican que los casos de mal uso ético de la IA se han multiplicado por 26 desde el año 2012 (Stanford University, 2023).
Si bien es cierto que la investigación en IA ha aumentado en todas sus áreas, hay que denotar que desde el 2017 particularmente las áreas de reconocimiento de patrones, aprendizaje automático y visión por computadora son aquellas con la mayor cantidad de publicaciones científicas (Stanford University, 2023). Sin embargo, en los últimos cinco años la IA se ha colocado no solo como un tema de investigación y desarrollo comercial; ya que en gran medida aplicaciones y sistemas con base en IA, como lo son filtros para fotografías y video, así como chatbots, se han encargado de…

… embarcar a más de uno en un viaje por el reino de las IA. Lo anterior ha sido posible en gran medida gracias al encanto de la IA generativa y, en particular, de los enigmáticos Grandes Modelos de Lenguaje (LLM o Large Language Models), los cuales han captado la imaginación y expectativas del mundo de manera inusitada. Estos LLM, tales como GPT o PaLM, representan un cambio de paradigma que trasciende la mera computación y se adentra en las intrincadas facetas de la cognición, la creatividad y la comunicación humanas. Por lo que no ha de parecernos extraño que, en un futuro no muy lejano, el área del Procesamiento del Lenguaje Natural abandone su posición como sexta área de investigación con más publicaciones científicas y se posicione dentro de las tres áreas con mayor número

Referencias

Adarlo, S. (2023, septiembre 26). Critics Furious Microsoft Is Training AI by Sucking Up Water During Drought. Futurism. https://futurism.com/critics-microsoft-water-train-ai-drought
Alahmad, R. y Robert, L. P. (2020). Artificial intelligence (ai) and it identity: Antecedents identifying with ai applications. ArXiv, abs/2005.12196. https://api.semanticscholar.org/CorpusID:218870057
Appenzeller, G., Bornstein, M. y Casado, M. (2023, abril 27). Navigating the High Cost of AI Compute. Andreessen Horowitz. https://a16z.com/navigating-the-high-cost-of-ai-compute
Bederson, B. B. y Quinn, A. J. (2011). Web workers unite! Addressing challenges of online laborers. In Conference on human factors in computing systems – proceedings (pp. 97–105). Association for Computing Machinery. https://dl.acm.org/doi/10.1145/1979742.1979606 doi: 10.1145/1979742.1979606

Belfield, H. (2020). Activism by the ai community: Analysing recent achievements and future prospects. In Proceedings of the aaai/acm conference on ai, ethics, and society (p. 15–21). NewYork, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3375627.3375814 doi:10.1145/3375627.3375814
Bender, E. M., Gebru, T., McMillan-Major, A. y Shmitchell, S. (2021, March). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM conference on fairness, accountability, and transparency (pp. 610-623).
Bennet, D. (2023, septiembre 29). Microsoft Sees Artificial Intelligence and Nuclear Energy as Dynamic Duo. Bloomberg. https://www.bloomberg.com/news/newsletters/2023-09-29/microsoft-msft-sees-artificial-intelligence-and-nuclear-energy-as-dynamic-duo
Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Liang, P. (2021). On the opportunities and risks of foundation models. ArXiv. https://crfm.stanford.edu/assets/report.pdf
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Amodei, D. (2020, may). Language models are few-shot learners. In Advances in neural information processing systems (Vol. 2020-Decem). Neural information processing systems foundation. https://arxiv.org/abs/2005.14165v4
Chomsky, N. (2023). Noam Chomsky: The False Promise of ChatGPT. NY times. https://www.nytimes.com/2023/03/08/opinion/noam-chomsky-chatgpt-ai.html.
De Vries, A. (2023). The growing energy footprint of artificial intelligence. Joule, 7(10), 2191-2194.
Devlin, J., Chang, M. W., Lee, K. y Toutanova, K. (2019, oct). BERT: Pretraining of deep bidirectional transformers for language understanding. NAACL HLT 2019 – 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies- Proceedings of the Conference, 1, 4171–4186. en http://arxiv.org/abs/1810.04805
Eloundou, T., Manning, S., Mishkin, P. y Rock, D. (2023, marzo). GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models. https://arxiv.org/abs/2303.10130v5
Gareth Corfield, M. F. (2022). Meet ChatGPT, the scarily intelligent robot who can do your job better than you.telegraph.co.uk.https://www.telegraph.co.uk/business/2022/12/05/meet-scarily-intelligent-robot-who-can-
Goertzel, B. y Singularitynet, . (2023, sep). Generative AI vs. AGI: The Cognitive Strengths and Weaknesses of Modern LLMs. https://arxiv.org/abs/2309.10371v1
Goodfellow, I., Bengio, Y. y Courville, A. (2016). Deep learning. MIT Press. (http://www.deeplearningbook.org)
Hara, K., Adams, A., Milland, K., Savage, S., Callison-Burch, C. y Bigham, J. P. (2018). A data-driven analysis of workers’ earnings on Amazon Mechanical Turk. In Conference on human factors in computing systems – proceedings (Vol. 2018-April). Disponible en https://doi.org/10.1145/3173574.3174023 doi:10.1145/3173574.3174023
Heritage, S. (2022). Could ChatGPT write my book and feed my kids? thetimes.co.uk.https://www.thetimes.co.uk/article/could-chatgpt-write-my-book-and-feed-my-kids-7972vx0xp.
Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., Sifre, L. (2022). Training Compute-Optimal Large Language Models. Advances in neural information processing systems (Vol. 35). Neural information processing systems foundation. https://arxiv.org/abs/2203.15556v1
Horton, J. J. (2011). The condition of the Turking class: Are online employers fair and honest? Economics Letters, 111(1), 10–12. https://arxiv.org/abs/1001.1172v1 doi: 10.1016/j.econlet.2010.12.007
Hui, X., Reshef, O. y Zhou, L. (2023). The Short-Term Effects of Generative Artificial Intelligence on Employment: Evidence from an Online Labor Market. Available at SSRN: https://ssrn.com/abstract=4527336 or http://dx.doi.org/10.2139/ssrn.4527336.
International Labour Organization. (2016). Non-Standard Employment Around the World: Understanding challenges, shaping prospects (Vol. 44, No. 29). http://www.ilo.org/global/publications/books/WCMS534326/lang−en/index.htm
Irani, L. C. y Silberman, M. S. (2013). Turkopticon: Interrupting worker invisibility in amazon mechanical turk. In Proceedings of the sigchi conference on human factors in computing systems (p. 611-620). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2470654.2470742 doi: 10.1145/2470654.2470742
Jem Bartholomew, D. M. (2023). How the media is covering Chat-GPT. CJR. https://www.cjr.org/towcenter/media−coverage−chatgpt.php.
Joshua Broyde, C. P. (2021). Build a medical sentence matching application using BERT and Amazon Sage-Make. Amazon Web Services. https://aws.amazon.com/es/blogs/machine-learning/build-a-medical-sentence-matching-application-
Kalodimos, J. y Leavitt, K. (2020). Experimental shareholder activism: A novel approach for studying top management decision making and employee career issues. Journal of Vocational Behavior, 120, 103429. Disponible en https://www.sciencedirect.com/science/article/pii/S0001879120300543 doi: https://doi.org/10.1016/j.jvb.2020.103429
Lee, A. (2023). What Are Large Language Models and Why Are They Important? NVIDIA. blogs.nvidia.com.
Lee, P., Bubeck, S. y Petro, J. (2023). Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine. New England Journal of Medicine, 388(13), 1233-1239.
Merchant, B. (2023). Column: Minimum wage ’ghosts’ keep Google and Microsoft’s AI arms race from becoming a nightmare. Los Angeles Times. https://www.latimes.com/business/technology/story/2023-02-16/column-google-microsoft-
Metz, C. (2023). The Secret Ingredient of ChatGPT Is Human Advice. New York times. https://www.nytimes.com/2023/09/25/technology/chatgpt-rlhf-human-tutors.html.
Mosqueira-Rey, E., Hernández-Pereira, E., Alonso-Ríos, D., Bobes-Bascarán, J. y Fernández-Leal, Á. (2023). Human-in-the-loop machine learning: A state of the art. Artificial Intelligence Review, 56(4), 3005-3054.
Nast, C. (2017). Amazon’s Turker Crowd Has Had Enough. Wired. https://www.wired.com/story/amazons-turker-crowd-has-had-enough/.
Nayak, P.(2019). Understanding searches better than ever before. Google Blog, 1–6. https://blog.google/products/search/search-language-understanding-bert/
Nedzhvetskaya, N. y Tan J. T. (2019). What we learned from over a decade of tech activism. The Guardian. https://www.theguardian.com/commentisfree/2019/dec/22/tech-worker-activism-2019-what-
Nellis, S. (2023, nov 15) Microsoft introduces its own chips for AI, with eye on cost. Reuters. https://www.reuters.com/technology/microsoft-introduces-its-own-chips-ai-with-eye-cost-2023-11-15/
Norman, D. (Julio 23, 2019). The Four Fundamental Principles of Human-Centered Design and Application. https://jnd.org/the-four-fundamental-principles-ofhuman-centered-design-and-application/
Perrigo, B. (2023). OpenAI Used Kenyan Workers on Less Than 2PerHour. Time. https://time.com/6247678/openai-chatgpt-kenya-
Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J., Song, H. F. e Irving, G. (2021). Scaling language models: Methods, analysis & insights from training gopher. CoRR, abs/2112.11446 . https://arxiv.org/abs/2112.11446
Roose, K. (2023). Bing’s A.I. Chat: ‘I Want to Be Alive. New York Times. https://www.nytimes.com/2023/02/16/technology/bing-chatbot-transcript.html.
Stanford University. (2023). Artificial Intelligence Index. AI Index Report 2023. Retrieved 2023-10-22, from https://aiindex.stanford.edu/report/
Stiennon, N., Ouyang, L., Wu, J., Ziegler, D. M., Lowe, R., Voss, C., . . . Chris- tiano, P. (2020). Learning to summarize from human feedback. In Proceedings of the 34th international conference on neural information processing systems. Red Hook, NY, USA: Curran Associates Inc.
Strubell, E., Ganesh, A. y McCallum, A. (2019). Energy and policy considerations for deep learning in NLP. arXiv preprint arXiv:1906.02243.
Thewsey, A. (2021). Bring structure to diverse documents with Amazon Textract and transformer-based models on Amazon SageMaker. Amazon Web Services. https://aws.amazon.com/es/blogs/machine-learning/bring-structure-to-diverse-documents
Tomlinson, B., Black, R., Patterson, D. and Torrance, A.W. (2023, marzo 23). The Carbon Emissions of Writing and Illustrating Are Lower for AI than for Humans. SSRN. https://ssrn.com/abstract=4399923
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017, jun). Attention is all you need. Advances in Neural Information Processing Systems, 2017-Decem, 5999–6009. http://arxiv.org/abs/1706.03762
Véliz, C. (2021). Privacidad es poder: Datos, vigilancia y libertad en la era digital. Debate.
Zuboff, S. (2020). La era del capitalismo de vigilancia. Paidós.

Carrito de compra