
ISBN
Electrónico
978-607-8964-14-7
Fecha de publicación
21-12-2024
Licencia
D. R. © copyright 2024; Eduardo Arango Herrera y Nallely Guadalupe Hernández Hernández.
Boulevar Adolfo López Mateos SN, Centro Universitario, 87149 Cdad.
Victoria, Tamaulipas.
Yesenia Sánchez Tovar
Universidad Autónoma de Tamaulipas
0000-0002-4299-191X
Karina Guadalupe Cortina Calderón
Universidad Autónoma de Tamaulipas
0000-0003-4494-5017
Julio César Castañón Rodríguez
Universidad Autónoma de Tamaulipas
0000-0003-4396-9973
Acerca de
En el contexto actual, la interacción con la Inteligencia Artificial (IA) se ha integrado en nuestras actividades diarias. El análisis de la interacción entre humanos e IA adquiere un valor significativo, puesto que se anticipa que estas interacciones se expandirán y se volverán más comunes en el futuro (Li y Sung, 2021). Por ejemplo, las personas, en la era actual han comenzado a leer artículos de noticias escritos por IA, a utilizar automóviles autónomos, a recibir entregas transportadas por drones y a concertar horarios con sus asistentes asistidos por alguna IA.
El valor potencial de la tecnología de la IA tiene una amplia gama de aplicaciones de entre las principales se encuentran la medicina (Wellsandt et al., 2020), la educación (Flores et al., 2022), la asistencia del hogar (Xie et al., 2023) y las compras (Balakrishnan y Dwivedi, 2021), entre muchas otras. En realidad, en la vida cotidiana, ya desde hace varios años las personas han venido interactuando con aplicaciones de IA, desde al usar Netflix, utilizando datos y algoritmos avanzados, la IA ofrece recomendaciones de películas personalizadas. Así como en Facebook, al identificar rostros en las fotos y sugerir etiquetas para esas caras (Li y Sung, 2021).
Es notable la expansión de la IA a través de diversos dispositivos impulsados por la misma, entre los cuales se encuentran los asistentes digitales (AD) (Brill et al., 2019). Entre los más comunes se encuentran tales como Siri y Alexa, que se integraron en dispositivos ya existentes en el mercado y que se han convertido en una presencia frecuente en la vida cotidiana de las personas (Li y Sung, 2021). En esta misma noción, se han desarrollado una gama diversa de dispositivos, como asistentes de voz y chatbots, que son capaces de interactuar con los usuarios mediante comandos de voz o texto (Pantano y Pizzi, 2020). Por ejemplo, Amazon lanzó el Amazon Echo para mejorar la interacción del usuario con su asistente virtual (Li y Sung, 2021), consolidando así a los AD como una realidad tecnológica en constante evolución (Ramadan, 2021).
Referencias
Aggarwal, P., & McGill, A. L. (2007). Is That Car Smiling at Me? Schema Congruity as a Basis for Evaluating Anthropomorphized Products. Journal of Consumer Research, 34(4), 468-479. https://doi.org/10.1086/518544
Ajzen, I. (1985). From Intentions to Actions: A Theory of Planned Behavior. En J. Kuhl & J. Beckmann (Eds.). Action Control: From Cognition to Behavior (pp. 11-39). Springer. https://doi.org/10.1007/978-3-642-69746-3_2
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
Ajzen, I., & Fishbein, M. (1972). Attitudes and normative beliefs as factors influencing behavioral intentions. Journal of Personality and Social Psychology, 21, 1-9. https://doi.org/10.1037/h0031930
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior (Pbk. ed). Prentice-Hall.
Ajzen, I. (2020). The theory of planned behavior: Frequently asked questions. Human behavior and emerging technologies, 2(4), 314-324.
Balakrishnan, J., & Dwivedi, Y. K. (2021). Conversational commerce: Entering the next stage of AI-powered digital assistants. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04049-5
Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S. (2009). Measurement Instruments for the Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots. International Journal of Social Robotics, 1(1), 71-81. https://doi.org/10.1007/s12369-008-0001-3
Belanche, D., Casaló, L., Flavian, C., & Scheper, J. (2019). Full article: Service robot implementation: A theoretical framework and research agenda. https://www.tandfonline.com/doi/full/10.1080/02642069.2019.1672666
Blut, M., Wang, C., Wünderlich, N. V., & Brock, C. (2021). Understanding anthropomorphism in service provision: A meta-analysis of physical robots, chatbots, and other AI. Journal of the Academy of Marketing Science, 49(4), 632-658. https://doi.org/10.1007/s11747-020-00762-y
Brill, T. M., Munoz, L., & Miller, R. J. (2019). Siri, Alexa, and other digital assistants: A study of customer satisfaction with artificial intelligence applications. Journal of Marketing Management, 35(15-16), 1401-1436. https://doi.org/10.1080/0267257X.2019.1687571
Choe, J. Y., Kim, J. J., & Hwang, J. (2021). Innovative marketing strategies for the successful construction of drone food delivery services: Merging TAM with TPB. Journal of Travel & Tourism Marketing, 38(1), 16-30. https://doi.org/10.1080/10548408.2020.1862023
Ciechanowski, L., Przegalinska, A., Magnuski, M., & Gloor, P. (2019). In the shades of the uncanny valley: An experimental study of human–chatbot interaction. Future Generation Computer Systems, 92, 539-548. https://doi.org/10.1016/j.future.2018.01.055
Flores, F. A. I., Sanchez, D. L. C., Urbina, R. O. E., Coral, M. Á. V., Medrano, S. E. V., & Gonzales, D. G. E. (2022). Inteligencia artificial en educación: Una revisión de la literatura en revistas científicas internacionales. Apuntes Universitarios, 12(1), Article 1. https://doi.org/10.17162/au.v12i1.974
Gelbrich, K., Hagel, J., & Orsingher, C. (2021). Emotional support from a digital assistant in technology-mediated services: Effects on customer satisfaction and behavioral persistence. International Journal of Research in Marketing, 38(1), 176-193.
Giampietri, E., Verneau, F., Del Giudice, T., Carfora, V., & Finco, A. (2018). A Theory of Planned behaviour perspective for investigating the role of trust in consumer purchasing decision related to short food supply chains. Food Quality and Preference, 64, 160-166. https://doi.org/10.1016/j.foodqual.2017.09.012
Guthrie, S. (1993). Faces in the Clouds: A New Theory of Religion. Oup Usa. https://philarchive.org/rec/GUTFIT
Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of service research, 21(2), 155-172.
Huang, J., Wang, L., & Chan, E. (2024). When does anthropomorphism hurt? How tool anthropomorphism negatively affects consumers’ rewards for tool users. Journal of Business Research, 170, 114355. https://doi.org/10.1016/j.jbusres.2023.114355
Jan, I. U., Ji, S., & Kim, C. (2023). What (de) motivates customers to use AI-powered conversational agents for shopping? The extended behavioral reasoning perspective. Journal of Retailing and Consumer Services, 75, 103440.
Khan, F. M., Anas, M., & Uddin, S. M. F. (2024). Anthropomorphism and consumer behaviour: A SPAR-4-SLR protocol compliant hybrid review. International Journal of Consumer Studies, 48(1), e12985. https://doi.org/10.1111/ijcs.12985
Kim, T., Sung, Y., & Moon, J. H. (2020). Effects of brand anthropomorphism on consumer-brand relationships on social networking site fan pages: The mediating role of social presence. Telematics and Informatics, 51, 101406. https://doi.org/10.1016/j.tele.2020.101406
Klaus, P., & Zaichkowsky, J. (2020). AI voice bots: A services marketing research agenda. Journal of Services Marketing, 34(3), 389-398. https://doi.org/10.1108/JSM-01-2019-0043
Knutzen, B., & Kennedy, D. (2012). The global classroom project: Learning a second language in a virtual environment. Electronic Journal of e-Learning, 10(1), 90-106.
Li, L., Lee, K. Y., Emokpae, E., & Yang, S.-B. (2021). What makes you continuously use chatbot services? Evidence from chinese online travel agencies. Electronic Markets, 31(3), 575-599. https://doi.org/10.1007/s12525-020-00454-z
Li, X., & Sung, Y. (2021). Anthropomorphism brings us closer: The mediating role of psychological distance in User–AI assistant interactions. Computers in Human Behavior, 118, 106680. https://doi.org/10.1016/j.chb.2021.106680
Lindquist, A., Johansson, P., Petersson, G., Saveman, B. I., & Nilsson, G. (2008). The use of the Personal Digital Assistant (PDA) among personnel and students in health care: a review. Journal of medical Internet research, 10(4), e1038.
MacInnis, D. J., & Folkes, V. S. (2017). Humanizing brands: When brands seem to be like me, part of me, and in a relationship with me. Journal of Consumer Psychology, 27(3), 355-374. https://doi.org/10.1016/j.jcps.2016.12.003
Malhotra, G., & Ramalingam, M. (2023). Perceived anthropomorphism and purchase intention using artificial intelligence technology: Examining the moderated effect of trust. Journal of Enterprise Information Management, ahead-of-print (ahead-of-print). https://doi.org/10.1108/JEIM-09-2022-0316
Marriott, H., & Pitardi, V. (2021). Alexa, she’s not human but… Unveiling the drivers of consumers’ trust in voice-based artificial intelligence. Psychology and Marketing, 38. https://doi.org/10.1002/mar.21457
McLean, G., Osei-Frimpong, K., & Barhorst, J. (2021). Alexa, do voice assistants influence consumer brand engagement? – Examining the role of AI powered voice assistants in influencing consumer brand engagement. Journal of Business Research, 124, 312-328. https://doi.org/10.1016/j.jbusres.2020.11.045
Mohr, S., & Kühl, R. (2021). Acceptance of artificial intelligence in German agriculture: An application of the technology acceptance model and the theory of planned behavior. Precision Agriculture, 22(6), 1816-1844. https://doi.org/10.1007/s11119-021-09814-x
M. Mori, “The uncanny valley,” Energy, vol. 7, no. 4, pp. 33–35, 1970
Moussawi, S., & Koufaris, M. (2019). Perceived Intelligence and Perceived Anthropomorphism of Personal Intelligent Agents: Scale Development and Validation. http://hdl.handle.net/10125/59452
Nissen, A., & Jahn, K. (2021). Between Anthropomorphism, Trust, and the Uncanny Valley: A Dual-Processing Perspective on Perceived Trustworthiness and Its Mediating Effects on Use Intentions of Social Robots. http://hdl.handle.net/10125/70654
Oktavia, T., Agung, C. A., Thalib, D. I., & Rahmanda, Y. D. (2023). An empirical study on the factors influencing the attitude and behaviors towards smartphone voice assistant usage. Journal of System and Management Sciences, 13(3), 481-504.
Özkan, Ö., Norman, P., Rowe, R., Day, M., & Poulter, D. (2024). Predicting drivers’ intentions to voluntarily use intelligent speed assistance systems: An application of the theory of planned behaviour. Transportation Research Part F: Traffic Psychology and Behaviour, 104, 532-543.
Pantano, E., & Pizzi, G. (2020). Forecasting artificial intelligence on online customer assistance: Evidence from chatbot patents analysis. Journal of Retailing and Consumer Services, 55, 102096. https://doi.org/10.1016/j.jretconser.2020.102096
Ramadan, Z. B. (2021). “Alexafying” shoppers: The examination of Amazon’s captive relationship strategy. Journal of Retailing and Consumer Services, 62, 102610. https://doi.org/10.1016/j.jretconser.2021.102610
Rauschnabel, P. A., & Ahuvia, A. C. (2014). You’re so lovable: Anthropomorphism and brand love. Journal of Brand Management, 21(5), 372-395. https://doi.org/10.1057/bm.2014.14
Rejón-Guardia, F., Polo-Peña, A. I., & Maraver-Tarifa, G. (2020). The acceptance of a personal learning environment based on Google apps: The role of subjective norms and social image. Journal of Computing in Higher Education, 32(2), 203-233.
Ruijten, P. A. M., Terken, J. M. B., & Chandramouli, S. N. (2018). Enhancing Trust in Autonomous Vehicles through Intelligent User Interfaces That Mimic Human Behavior. Multimodal Technologies and Interaction, 2(4), Article 4. https://doi.org/10.3390/mti2040062
Sah, Y. J. (2021). Talking to a pedagogical agent in a smart TV: Modality matching effect in human-TV interaction. Behaviour & Information Technology, 40(3), 240-250. https://doi.org/10.1080/0144929X.2019.1685003
Seyama, J., & Nagayama, R. S. (2007). The Uncanny Valley: Effect of Realism on the Impression of Artificial Human Faces. Presence: Teleoperators and Virtual Environments, 16(4), 337-351. https://doi.org/10.1162/pres.16.4.337
Song, S. W., & Shin, M. (2024). Uncanny Valley Effects on Chatbot Trust, Purchase Intention, and Adoption Intention in the Context of E-Commerce: The Moderating Role of Avatar Familiarity. International Journal of Human–Computer Interaction, 40(2), 441-456. https://doi.org/10.1080/10447318.2022.2121038
Waytz, A., Morewedge, C. K., Epley, N., Monteleone, G., Gao, J.-H., & Cacioppo, J. T. (2010). Making sense by making sentient: Effectance motivation increases anthropomorphism. Journal of Personality and Social Psychology, 99(3), 410-435. https://doi.org/10.1037/a0020240
Wellsandt, S., Rusak, Z., Ruiz Arenas, S., Aschenbrenner, D., Hribernik, K. A., & Thoben, K.-D. (2020). Concept of a Voice-Enabled Digital Assistant for Predictive Maintenance in Manufacturing (SSRN Scholarly Paper 3718008). https://doi.org/10.2139/ssrn.3718008
Williams, M. D., Rana, N. P., & Dwivedi, Y. K. (2015). The unified theory of acceptance and use of technology (UTAUT): A literature review. Journal of Enterprise Information Management, 28(3), 443-488. https://doi.org/10.1108/JEIM-09-2014-0088
Xie, Y., Zhao, S., Zhou, P., & Liang, C. (2023). Understanding Continued Use Intention of AI Assistants. Journal of Computer Information Systems, 63(6), 1424-1437. https://doi.org/10.1080/08874417.2023.2167134
Yadav, S. S., Kar, S. K., & Rai, P. K. (2022). Why do consumers buy recycled shoes? An amalgamation of the theory of reasoned action and the theory of planned behaviour. Frontiers in Environmental Science, 10. https://www.frontiersin.org/articles/10.3389/fenvs.2022.1007959
Yang, H. (Chris), & Zhou, L. (2011). Extending TPB and TAM to mobile viral marketing: An exploratory study on American young consumers’ mobile viral marketing attitude, intent and behavior. Journal of Targeting, Measurement and Analysis for Marketing, 19(2), 85-98. https://doi.org/10.1057/jt.2011.11